Eagle Installation Manual

ALPHA SYSTEMS AOA
Eagle

Eagle AOA Kit – DSTR-AOA-9600K
Eagle Dual AOA Kit – DSTR-AOA-9600KDUAL
Eagle Pressurized AOA Kit – DSTR-AOA-9600PK
Eagle Dual Pressurized AOA Kit – DSTR-AOA-9600DPK

INSTALLATION MANUAL

P# AOA-9050-Eagle
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. General</td>
<td>1.1</td>
</tr>
<tr>
<td>1.1 Objective</td>
<td>1.1</td>
</tr>
<tr>
<td>1.2 Background Information by the Numbers</td>
<td>1.1</td>
</tr>
<tr>
<td>1.3 Disclaimers</td>
<td>1.1</td>
</tr>
<tr>
<td>1.4 Page and Subject Numbers</td>
<td>1.2</td>
</tr>
<tr>
<td>1.5 Revisions</td>
<td>1.2</td>
</tr>
<tr>
<td>1.6 Technical Support</td>
<td>1.2</td>
</tr>
<tr>
<td>1.7 Warranty Information</td>
<td>1.2</td>
</tr>
<tr>
<td>1.8 Restrictions and Limitations</td>
<td>1.3</td>
</tr>
<tr>
<td>1.9 System Description (Non-Pressurized Standard Version)</td>
<td>1.4</td>
</tr>
<tr>
<td>1.10 Pressurized Version Overview</td>
<td>1.5</td>
</tr>
<tr>
<td>1.11 Dual Standard Version</td>
<td>1.6</td>
</tr>
<tr>
<td>1.12 Dual Pressurized Version</td>
<td>1.7</td>
</tr>
<tr>
<td>1.13 IO Extension (Optional)</td>
<td>1.8</td>
</tr>
<tr>
<td>1.14 RS232 Serial Data Interface (Optional)</td>
<td>1.9</td>
</tr>
<tr>
<td>1.15 RS232 Display Adapter Module</td>
<td>1.10</td>
</tr>
<tr>
<td>1.16 AOA Probe and Mounting Plate</td>
<td>1.11</td>
</tr>
<tr>
<td>1.17 AOA Interface Module (IM) Description and Operation</td>
<td>1.13</td>
</tr>
<tr>
<td>1.18 Pressurized Interface Modules</td>
<td>1.15</td>
</tr>
<tr>
<td>1.19 Display Overview</td>
<td>1.16</td>
</tr>
<tr>
<td>1.20 Optional Display Mounting Kits</td>
<td>1.18</td>
</tr>
<tr>
<td>2. Planning</td>
<td>2.1</td>
</tr>
<tr>
<td>2.1 Preparation</td>
<td>2.1</td>
</tr>
<tr>
<td>2.2 Establish the Desired Location of the AOA Display</td>
<td>2.1</td>
</tr>
<tr>
<td>2.3 Establish the Desired Location for the AOA Interface Module</td>
<td>2.2</td>
</tr>
<tr>
<td>2.4 Establish the Location for the AOA Probe</td>
<td>2.3</td>
</tr>
<tr>
<td>2.5 Establish a Plan to Route the Sense Lines Through the Aircraft Structure</td>
<td>2.4</td>
</tr>
<tr>
<td>2.6 Establish a Plan for the Electrical Power</td>
<td>2.4</td>
</tr>
<tr>
<td>2.7 Optional AOA Probe Heat Installation</td>
<td>2.5</td>
</tr>
<tr>
<td>2.8 Review your Plans</td>
<td>2.5</td>
</tr>
<tr>
<td>3. Installation</td>
<td>3.1</td>
</tr>
<tr>
<td>3.1 Installation Overview</td>
<td>3.1</td>
</tr>
<tr>
<td>3.2 Preparing to Install the Probe</td>
<td>3.6</td>
</tr>
<tr>
<td>3.3 Installation of the AOA Sense Lines</td>
<td>3.7</td>
</tr>
<tr>
<td>3.4 Install Wiring, Switch & Circuit Breaker for the AOA System</td>
<td>3.8</td>
</tr>
<tr>
<td>3.5 Typical Pilot Heat Electrical Connection</td>
<td>3.9</td>
</tr>
<tr>
<td>3.6 Typical IO Electrical Connection</td>
<td>3.11</td>
</tr>
<tr>
<td>3.7 RS232 Communications</td>
<td>3.15</td>
</tr>
<tr>
<td>3.8 Install the AOA Indicator</td>
<td>3.19</td>
</tr>
<tr>
<td>3.9 Install the AOA Interface Module (IM)</td>
<td>3.19</td>
</tr>
<tr>
<td>3.10 Install the AOA Probe and Mounting Plate</td>
<td>3.22</td>
</tr>
<tr>
<td>3.11 Correct Position of Probe Lock Plate</td>
<td>3.23</td>
</tr>
<tr>
<td>3.12 Inspect the AOA Installation</td>
<td>3.24</td>
</tr>
<tr>
<td>4. Documentation</td>
<td>4.1</td>
</tr>
<tr>
<td>4.1 Background Information</td>
<td>4.1</td>
</tr>
<tr>
<td>4.2 Major vs. Minor Alteration</td>
<td>4.1</td>
</tr>
<tr>
<td>4.3 Logbook Entries</td>
<td>4.2</td>
</tr>
<tr>
<td>4.4 Documentation Review</td>
<td>4.6</td>
</tr>
<tr>
<td>5. Appendix</td>
<td>5.1</td>
</tr>
<tr>
<td>5.1 Acronyms and Abbreviations</td>
<td>5.1</td>
</tr>
<tr>
<td>5.2 Operational and Environmental Limitations</td>
<td>5.2</td>
</tr>
<tr>
<td>5.3 Diagrams</td>
<td>5.3</td>
</tr>
</tbody>
</table>
1. GENERAL

1.1 Objective:

There is a lot of information contained in this manual that is repeated in different ways to help explain all steps of installation through calibration and help with the FAA required paperwork. This manual is designed to take you step-by-step through the planning, installation, documentation and calibration for your Alpha Systems Angle of Attack System. If you follow the instructions throughout the entire process, the installation can be completed correctly the first time.

This manual is intended to describe and guide the installation process of a standard AOA system. However, differences will be outlined to cover a variety of AOA system versions such as: pressurized, dual, and dual pressurized systems.

1.2 Background Information by the Numbers:

AC23.1309-1C has a stated objective, “to improve the safety of the airplane fleet by fostering the incorporation of both new technologies that address pilot – error and weather related accidents and those technologies that can be certified affordably.”

14 CFR part §21.93(a) states in part, “a minor change is one that has no appreciable effect on the weight, balance, structural strength, reliability, operational characteristics or other characteristics affecting the airworthiness of the product.”

14 CFR part §43.13(b) states in part, “each person altering an aircraft shall do that work in such a manner and use materials of such a quality, that the condition of the aircraft worked on will be at least equal to its original or properly altered condition.”

What does this mean?

- The FAA is encouraging modifications that improve operational safety. The Alpha Systems Angle of Attack System is considered to be such a modification.

- A determination needs to be made by the person installing the angle of attack system that it is either a major or minor installation. Alpha Systems believes that installing its angle of attack system in most aircraft is a minor alteration; however, this determination is ultimately the responsibility of the person performing the alteration and returning the aircraft to service.

- Alpha Systems believes that installing its angle of attack system in most aircraft meets the requirements of 14 CFR §43.13(b) if done in accordance with this installation manual, AC43.13-1B, AC43.13-2B and AC23.1309-1D. Again, this determination is ultimately the responsibility of the person performing the alteration and returning the aircraft to service.

1.3 Disclaimers:

Alpha Systems Angle of Attack System will perform well in a large variety of aircraft. For this reason, the instructions were written in a general format that applies to most aircraft. We understand that the referenced regulations and advisory circulars may not be applicable to all aircraft; however, we feel that they offer excellent guidance for this installation and should be followed.
1.4 Page and Subject Numbers:

Pages in this manual are assigned a two part page number. The first always specifies the chapter number. The last number indicates the page number. Subjects within a chapter will be numbered with the chapter number followed by the subject number.

1.5 Revisions:

When a revision is required of this manual, the manual will be revised in its entirety.

1.6 Technical Support:

Phone: 763-506-9990
E-mail aoa@depotstar.com

1.7 Warranty Information:

LIMITATION OF REMEDIES AND LIABILITY: If this Alpha Systems AOA product is proved to be defective, THE EXCLUSIVE REMEDY OF ALPHA SYSTEM AOA’s / DepotStar, Inc. OPTION SHALL BE TO REPAIR OR REPLACE THE DEFECTIVE COMPONENT ONLY. Alpha System AOA / DepotStar, Inc. shall not otherwise be liable for installation or removal costs or any other losses or damages, whether direct, indirect, special, incidental or consequential, regardless of the legal theory asserted, including negligence, warranty or strict liability. If you cannot accept these terms, return the uninstalled unit along with the receipt for a refund.

Included in the documentation package is the Warranty Registration Form. This form must be completed, signed and returned to Alpha Systems AOA / DepotStar, Inc. to activate the product warranty.
1.8 Restrictions and Limitations:

- This AOA system has not been determined to be suitable for installation in any specific aircraft by Alpha Systems. It may be installed in a type-certificated aircraft, provided that it has been determined suitable for installation by an appropriately rated mechanic by means such as field approval or as a minor alteration.
- Installation of the Alpha Systems AOA in a commuter or transport category airplane is prohibited, unless approval is given from the FAA.
- Installation of the Alpha Systems AOA as a replacement for or modification to an existing approved stall warning system is prohibited!
- The Alpha Systems AOA is required to have a placard located in plain view that must state the following: “Not for use as a primary instrument for flight.”
- The AOA system may not be used as a substitution for the certified aircraft stall warning system.
- No operational credit may be taken for such items as reduced approach speed and shorter landing distances.
- The Alpha Systems AOA is not required and is intended to provide supplemental information to the pilot.

The Alpha Systems AOA cannot be placed in the cockpit in such a manner as to interfere with the pilot’s view of primary flight instruments.

The Alpha Systems AOA cannot be placed in the cockpit in such a manner as to obstruct the pilot’s view or cause distraction.

The Alpha Systems AOA is a stand-alone system and does not replace any existing, primary instruments, or displays and is not considered essential for flight.
1.9 System Description (Non-Pressurized Standard Version):

The Alpha Systems AOA measures pressure at two points on an Angle of Attack (AOA) probe mounted solidly to the wing in reference to the chord of the wing, conveying changing differential pressures, via sense lines, to the system interface module (IM). The IM converts pressures into electrical signals which are then transmitted to the display. The indicator displays the appropriate segments to convey the AOA / lift information to the pilot. The IM has an output connector which allows connection to the aircrafts audio system to provide warning annunciations through the audio panel, into the pilot's headset.
1.10 Pressurized Version Overview:

Alpha Systems’ pressurized unit is designed to be installed without drilling holes or modifying the pressure vessel. This is accomplished by placing the circuitry needed for the AOA probe sensing, power supply and associated circuitry in the AOA Sensor Interface Module and mounting those components outside of the pressure bulkhead. The AOA probe picks up the differential pressures and sends them through two hoses directly to the Sensor Interface Module. One shielded cable with four wires: Power, ground, signal and shield, is routed to an existing electrical bulkhead connector. This allows a pass-through utilizing unused pins on the existing connector. On the inside of the pressure vessel or inside of the pressurized cabin, match up the same electrical pins and solder the same wires matching the signals from outside to inside. Use the prewired cable that will plug directly into the IM, mounted securely inside the cabin within 6 feet of the display location.
1.11 Dual Standard Version:

Alpha Systems’ dual kits are designed to be installed in situations where more than one pilot would like to observe the AOA indications. This is done by installing a Dual Display Interface that splits the display signal from one IM to two displays. A dual display extension cable is used to connect the IM to the Dual Display Interface, which connects via display extension cables to each display. Note that one display will be labeled as SECONDARY, and must be installed with the primary display in order to function properly. The displays are calibrated simultaneously, using the same OAA & Cruise set-point calibration routine as a Non-Pressurized Standard Version. The main difference in a dual system is the Brightness Calibration routine can be completed individually for each display to each pilot’s preference.
1.12 Dual Pressurized Version:

Alpha Systems’ dual pressurized kits are designed to be installed in situations where more than one pilot would like to observe the AOA indications in a pressurized aircraft. A dual pressurized system utilized the components of both a dual and pressurized system, including the Dual Display Interface and Sensor Interface Module. The calibration routine, AOA observations, and overall functionality remain the same as a Non-Pressurized Standard Version. However, remember that the Brightness Calibration routine is individual to each display in any dual system.
1.13 IO Extension (Optional):

Alpha System’s IO Module can provide a combination of different inputs to supplement the feedback that the pilot receives from the system. The inputs can include gear warning, flap switch response, as well as an analog flap signal for aircraft that use a variable flap signal.

Using the IO Extension Module, aircraft’s flap signals can be installed in situations where the pilot would like to observe the changes in AOA corresponding to different flap positions. It utilizes the aircraft’s existing flap inputs to feed information through the additional IO Module and into the standard/pressurized IM, and finally to the display; providing supplemental AOA information to the pilot. The Flap IO Extension can be incorporated into any existing Alpha Systems AOA kit.

By connecting the gear warning input to the aircraft’s existing gear up/down signal, the pilot will have the ability to activate an audio warning that alerts the pilot when the gear is not down and a near-landing AOA has been reached. The pilot can activate the function by pressing the SEL button when the rotary switch is in position 3 and the AOA is powered ON and active.

(Refer to the Flap IO electrical schematic in chapter 3 for more details)
1.14 RS232 Serial Data Interface (Optional):

An RS232 Serial Data Interface has been incorporated for aircraft requiring this type of connection. This feature allows customers to use the Alpha Systems I/F Module and Probe system to read a display response on an aircraft’s existing flight display. This new configuration comes standard on newly purchased IMs and can be accessed via the 15 pin Dsub connector as follows:

- Pin 8; RS232 TXD
- Pin 6; RS232 Signal Ground
- Pin 4; RS232 Shield

The image below describes the RS232 Serial Data Protocol.

<table>
<thead>
<tr>
<th>ILLUMINATED LEDS</th>
<th>DATA BYTES</th>
</tr>
</thead>
<tbody>
<tr>
<td>NONE</td>
<td>0x00 ; 0x00 ; 0x00</td>
</tr>
<tr>
<td>RED TRIANGLE</td>
<td>0x03 ; 0x00 ; 0x00</td>
</tr>
<tr>
<td>RED TRIANGLE & RED CHEVRON</td>
<td>0x3F ; 0x00 ; 0x00</td>
</tr>
<tr>
<td>RED CHEVRON</td>
<td>0x3C ; 0x00 ; 0x00</td>
</tr>
<tr>
<td>RED CHEVRON & UPPER DOUGHNUT</td>
<td>0xFC ; 0x00 ; 0x00</td>
</tr>
<tr>
<td>UPPER DOUGHNUT</td>
<td>0xC0 ; 0x00 ; 0x00</td>
</tr>
<tr>
<td>WHOLE DOUGHNUT</td>
<td>0xC0 ; 0x00 ; 0x00</td>
</tr>
<tr>
<td>LOWER DOUGHNUT</td>
<td>0x00 ; 0x00 ; 0x00</td>
</tr>
<tr>
<td>LOWER DOUGHNUT & YELLOW CHEVRON</td>
<td>0x00 ; 0x3F ; 0x00</td>
</tr>
<tr>
<td>YELLOW CHEVRON</td>
<td>0x00 ; 0x3C ; 0x00</td>
</tr>
<tr>
<td>YELLOW CHEVRON & YELLOW TRIANGLE</td>
<td>0x00 ; 0xFC ; 0x00</td>
</tr>
<tr>
<td>YELLOW TRIANGLE</td>
<td>0x00 ; 0xC0 ; 0x00</td>
</tr>
<tr>
<td>YELLOW TRIANGLE & GREEN BAR</td>
<td>0x00 ; 0xC0 ; 0x03</td>
</tr>
<tr>
<td>GREEN BAR</td>
<td>0x00 ; 0x00 ; 0x03</td>
</tr>
<tr>
<td>ALL SEGMENTS</td>
<td>0xFF ; 0xFF ; 0x03</td>
</tr>
<tr>
<td>RED TRIANGLE, RED CHEVRON & UPPER DOUGHNUT</td>
<td>0xFF ; 0x00 ; 0x00</td>
</tr>
<tr>
<td>RED TRIANGLE, RED CHEVRON & WHOLE DOUGHNUT</td>
<td>0xFF ; 0x03 ; 0x00</td>
</tr>
<tr>
<td>RED TRIANGLE, RED CHEVRON, BLUE DOUGHNUT & YELLOW CHEVRON</td>
<td>0xFF ; 0x3F ; 0x00</td>
</tr>
<tr>
<td>RED TRIANGLE, RED CHEVRON, BLUE DOUGHNUT, YELLOW CHEVRON & YELLOW TRIANGLE</td>
<td>0xFF ; 0xFF ; 0x00</td>
</tr>
</tbody>
</table>
1.15 RS232 Display Adapter Module:

Alpha Systems AOA also offers an RS232 Display Adapter that allows an existing AOA flight system to interface with Alpha Systems AOA Displays.

Follow the table below to program the Serial Data Protocol:

RS232 Command Protocol

<table>
<thead>
<tr>
<th>ILLUMINATED LEDS</th>
<th>RS232 DATA BYTES</th>
</tr>
</thead>
<tbody>
<tr>
<td>NONE</td>
<td>0x30 ; 0xD ; 0xD</td>
</tr>
<tr>
<td>RED TRIANGLE</td>
<td>0x31 ; 0xD ; 0xD</td>
</tr>
<tr>
<td>RED TRIANGLE & RED CHEVRON</td>
<td>0x32 ; 0xD ; 0xD</td>
</tr>
<tr>
<td>RED CHEVRON</td>
<td>0x33 ; 0xD ; 0xD</td>
</tr>
<tr>
<td>RED CHEVRON & UPPER DOUGHNUT</td>
<td>0x34 ; 0xD ; 0xD</td>
</tr>
<tr>
<td>UPPER DOUGHNUT</td>
<td>0x35 ; 0xD ; 0xD</td>
</tr>
<tr>
<td>WHOLE DOUGHNUT</td>
<td>0x36 ; 0xD ; 0xD</td>
</tr>
<tr>
<td>LOWER DOUGHNUT</td>
<td>0x37 ; 0xD ; 0xD</td>
</tr>
<tr>
<td>LOWER DOUGHNUT & YELLOW CHEVRON</td>
<td>0x38 ; 0xD ; 0xD</td>
</tr>
<tr>
<td>YELLOW CHEVRON</td>
<td>0x39 ; 0xD ; 0xD</td>
</tr>
<tr>
<td>YELLOW CHEVRON & YELLOW TRIANGLE</td>
<td>0x41 ; 0xD ; 0xD</td>
</tr>
<tr>
<td>YELLOW TRIANGLE</td>
<td>0x42 ; 0xD ; 0xD</td>
</tr>
<tr>
<td>YELLOW TRIANGLE & GREEN BAR</td>
<td>0x43 ; 0xD ; 0xD</td>
</tr>
<tr>
<td>GREEN BAR</td>
<td>0x44 ; 0xD ; 0xD</td>
</tr>
<tr>
<td>ALL SEGMENTS</td>
<td>0x45 ; 0xD ; 0xD</td>
</tr>
<tr>
<td>RED TRIANGLE, RED CHEVRON & UPPER DOUGHNUT</td>
<td>0x46 ; 0xD ; 0xD</td>
</tr>
<tr>
<td>RED TRIANGLE, RED CHEVRON & WHOLE DOUGHNUT</td>
<td>0x47 ; 0xD ; 0xD</td>
</tr>
<tr>
<td>RED TRIANGLE, RED CHEVRON, BLUE DOUGHNUT & YELLOW CHEVRON</td>
<td>0x48 ; 0xD ; 0xD</td>
</tr>
<tr>
<td>RED TRIANGLE, RED CHEVRON, BLUE DOUGHNUT, YELLOW CHEVRON & YELLOW TRIANGLE</td>
<td>0x49 ; 0xD ; 0xD</td>
</tr>
</tbody>
</table>

where \(ID = 0x61 \) for Primary Display
where \(ID = 0x62 \) for Secondary Display
where \(ID = 0x63 \) for Both Displays

| ADJUST BRIGHTNESS | 0x53 ; 0xXX ; 0xD |

where \(XX = 0x30 \) to \(0x39, 0x41 \) to \(0x46 \)
1.16 AOA Probe and Mounting Plate:

GENERIC INSTALLATION OVERVIEW

Due to the huge number of aircraft types, models and pilot installation preferences; this manual will try to address concerns so that, once installed, the system will function properly. To begin the installation process, the AOA probe must be installed in clean air (undisturbed air stream) in a location so that at all Attitudes, Slips or Skids; NOTHING could block or disrupt the air at the tip of the probe. The standard AOA probe mounting plate is 9" x 9" - cut to fit. Typically, it replaces an existing inspection cover which will then hold the AOA probe. The mounting location must be a rigid location on the aircraft, a minimum of 2 feet outside the prop arc, and typically mounted between 6” inches back from leading edge and 10 inches up from trailing edge - center span optimal. This prevents any attitude, slip or skid; NOTHING disrupting the direct air into the AOA probe. On twin engine aircraft, it could be installed on the nose of the aircraft and in an area determined by the A&P to be non-structural, such as in the nosecone or in the skin. The probe must be mounted vertically and must not be blocked by any probe or antenna. After the mounting plate and probe are attached to the aircraft, it may be necessary to remove material on the mounting plate to allow the AOA probe to be adjusted past or less than the 50 degree angle to allow for full scale electronic calibration (if additional angle increase is required).

NOTES:

1.) Probe and 2 fittings = .23 lbs.
2.) 9” x 9” plate + hardware = .40 lbs. (Less when cut to fit existing opening)
3.) Add .25 lbs. with optional probe heat
4.) Weight of sense line is .02 lbs. / ft.
5.) Material: .040” 6061-T6 Aluminum
Mounting Plate Drawing

The mounting plate is typically cut to fit in an existing inspection panel. However, the mounting brackets can be removed by drilling out the rivets. These holes and probe slot can be transferred to an existing inspection cover, nose cone, skin, or other method of attaching the angle brackets securely to the aircraft.
1.7 AOA Interface Module (IM) Description and Operation:

The Alpha Systems Angle of Attack system constantly samples pressures at two points from the AOA probe and conveys those changing pressures, via sense lines, to the AOA Interface Module (IM). The IM converts those pressures into an electrical signal that’s transmitted to the display. The display interprets the signal and the display conveys the angle of attack / lift information to the pilot. In addition to the visual display, the IM has an I/O port that connects to the aircrafts audio panel.
Mounting Holes for the Display Interface Module

This shows the holes for mounting the IM securely, anywhere inside the cabin of the aircraft. Clearance for the electrical connections, tubing and servicing should be taken into consideration for access when a location is chosen.
In a pressurized system, the Alpha Systems angle of attack unit constantly samples pressures at two points from the AOA probe and conveys those changing pressures, via sense lines, to the Sensor Interface Module. The Sensor Interface Module converts those pressures into an electronic signal that’s transmitted to the IM via an existing bulkhead connector and provided cable. From the bulkhead connector, the signal is transmitted to the IM via the AUX I/O connector. The IM then sends a digital signal to the AOA display. The display interprets the signal and turns on the appropriate segments to convey the angle of attack / lift information to the pilot.
1.19 Display Overview:

The Alpha Systems AOA Eagle is an AOA display with 14 colored segments and has the dimensions of 2.5" long X .860" wide X 1.250" deep and weighs .300 LBS with the electronic cable. The display can be mounted anywhere in the cockpit, but is recommended to be mounted on top of the glare shield. Other optional mounting kits are available for glare shield mounting such as the vertical swivel flush mount for the aircraft that has a sloping glare shield, allowing the display to be positioned to be seen in the pilots’ or co-pilots peripheral vision.

- The light shroud is included, but optional. It provides shade to the display so the segments are always clearly visible.

The standard fixed mounting kit (shown right) is used to mount the display to the glare shield.
The Eagle AOA system requires the addition of a switch panel. This panel is used for calibration entries, audio mute indicator and the audio mute switch.

The wide end of the slot is the position identifier.

Switch Panel Cutout

NOT TO SCALE
1.20 Optional Display Mounting Kits:

The Eagle AOA display can be mounted vertically in the pilot’s peripheral vision by purchasing an optional mounting kit. These mounting kits allow for accurate positioning in a vertical orientation on, or above, the aircraft’s glare shield and mounts simply with 4 screws.

Vertical Swivel Mounting Kit

The Eagle display has mounting holes on the back of the case threaded for 6/32 screws.

The swivel kit is mounted from under the glare shield and the shaft allows the L bracket to be mounted solidly with the provided screw.
The swivel mount drill guide disk is included with the mounting kit. It’s used to aid in the drilling of the mounting holes for surface placement.

Step 1
Orient drill guide in location where swivel will mount, Using a #40 drill, drill hole, Cleco through hole and spin disk in final location.

Step 2
When disk is in the final position, drill hole 2, Cleco, drill hole 3, Cleco, drill holes 4 and 5.

Step 3
Using Hole 5, drill for clearance swivel base of .720".

Once the 4 outer holes are located and drilled, re-drill with a # 32 (.116") clearance for the 4-40 mounting screws.
Valkyrie HUD Mounting Kit

Description: The Valkyrie Display adapter was designed to fit our standard vertical displays, such as the “Eagle” and “Falcon” line of 2.5” H X .865” wide displays. This “heads up” display adapter with the adjustable mounting brackets allows the display to be mounted in a flush mount below the glare shield pointing up. The Valkyrie mounting frame slides over the face of the AOA case and has four plastic tipped set screws that tighten against the front lip of our display. Once installed, the lens is tilted so the AOA display is reflected and viewed in the pilot’s peripheral vision. This glass allows the pilot to see through the glass and still see the colored segments.

NOTE: When the display is mounted, it is positioned upside down so the reflected image has the RED at the top of the glass!

Most installations are completed as seen above. There must be 1.500” clearance under the glare shield to allow for the AOA case and the electrical cable clearance. The adjustable mounting brackets allow for thicknesses of glare shield and desired heights of the display mounting.
Adjustable mounting bracket screws attach to the side of the AOA display.

Glare shield cutout drawing for flush mounting. This allows for the display to protrude up through the glare shield.

The Valkyrie HUD is pilot-adjustable for viewing or can be pushed down flat when not in use.

The Valkyrie base plate mounts to the top of the glare shield, and to the brackets underneath.

4 set screws to attach the frame to the AOA display.

NOT TO SCALE
2. PLANNING

2.1 Preparation:

This chapter will guide you through the planning phase of the installation process. To prepare for the installation, it is recommended that you read this manual in its entirety and complete this chapter prior to performing any work.

2.2 Establish the Desired Location of the Angle of Attack Display:

The Alpha Systems AOA is intended to provide supplemental information; therefore, it cannot be used as a replacement for any required instruments.

There is some guidance in AC43.13-2B Chapter 11 and FAR §23.1321 that refer to the location and installation of the instruments. Basically, the instruments should be arranged in the standard “T” configuration with the Alpha Systems AOA indicator, preferably as high and left of the attitude indicator as possible. The location should also allow routing of the electrical wiring so it will not interfere with any moving controls, cables or come in contact with any line containing flammable fluids or gases.

Since the Alpha Systems AOA Indicator is electronic, there are a number of other factors to be considered. For example, the intent of FAR 23.1311 is to cover installation of “CRT” or “LCD” displays that replace conventional analog instruments. Since the AOA system does not replace any required instruments and does not involve a “CRT or “LCD” display, this regulation does not apply. Showing compliance with this FAR can be done as follows:

- 23.1311 Electronic display instrument system
 - (a)(1) Arrangement and visibility; this requirement will have been met by complying with FAR 21.1321.
 - (a)(2) Be easily legible under all lighting conditions. This requirement has been met by design; the display is designed to be seen in direct sunlight and has a built in dimming device for lower levels of light.
 - (a)(3-7),(b)&(c) Does not apply since the system is stand alone and does not interface with, or replace any existing instruments or displays. It is not considered essential for flight.

Listed below are four different scenarios. Find and complete the one that pertains to your installation and use the following formula when calculating the additional load:

\[
(\text{Indicator Weight}) \times (\text{Aircraft “G” Limit}) \times 1.5 \text{ (Safety Margin)} = \text{Additional Load}
\]

Example:

\[
.5\text{lbs} \times 6.6 \times 1.5 = 4.95 \text{ lbs.}
\]

- If you are planning to install the indicator in an existing hole on the instrument panel, then a determination is needed to insure that the fasteners/shock mounts will accept the additional load of the indicator. The indicator weighs .5 lbs. (or less, depending on the model). The addition of the indicator should not normally exceed the limits of the mounting hardware. This is a preferred method of installing the indicator and in most cases will require no additional alterations; hence a minor alteration. Please refer to AC43.13-2B Chapter 1 and Chapter 2 paragraph 203(a-e) for guidance.
- If you are planning to install the indicator in a **panel that is shock mounted and has no existing mounting hole present** you will need to make two determinations. First, will the shock mounts accept the additional load of the indicator and secondly, will the panel be strong enough with an additional instrument hole in it. The indicator weighs .5lbs (or less, depending on the model) so the addition of the indicator should not normally exceed the limits of the shock mounts. The panel strength should not be an issue if you keep the hole spacing the same as the original panel layout. This is also a preferred method of installing the indicator and in most cases will require no additional support structure, hence a minor alteration. Please refer to AC43.13-2B Chapter 1 and Chapter 2 paragraph 203(a-e) for guidance.

- If you are planning to install the indicator on a **glare shield** you will need to determine if the structure is strong enough to support the weight of the indicator. This is also a preferred method of installing the indicator, and in most cases will require no additional support structure; hence a minor alteration. Please refer to AC43.13-2B Chapter 1 and Chapter 2 paragraph 205(a-c) for guidance.

- If you are planning to install the indicator in a panel **where no mounting hole is present and the panel is not shock mounted**, two determinations will be required. First, if the panel is non-structural, you will need to determine that the mounting hardware will accept the additional load of the indicator and secondly, will the panel be strong enough with an additional instrument hole in it. The indicator weighs .5 lbs. (or less, depending on the model). The additional load of the indicator should not normally exceed the limits of the mounting hardware. The panel strength should not be an issue if you keep the hole spacing the same as the original panel layout. This method of installing the indicator will, in most cases, not require additional support structure; hence a minor alteration. If you intend to install the indicator in a structural panel, then this would be considered a major alteration and engineering data may be required and should be obtained prior to any work being performed. Please refer to AC43.13-2B Chapter 1 and Chapter 2 paragraph 203(a-e) for guidance.

2.3 Establish the Desired Location for the AOA Interface Module (IM):

The AOA Interface Module (IM) is used to convert pressures, measured at two points on the probe, to an electrical signal that is then delivered to the indicator - which displays angle of attack / lift information to the pilot. The AOA IM may be physically installed in a variety of locations while observing the following limitations:

- The structure must support the additional load of the module.
- The sense lines are routed so that they do not interfere with any moving controls or cables.
- The electrical wiring does not interfere with any moving controls or cables and shall not come in contact with any line containing flammable fluids or gases.
- The AOA IM must be bonded to the airframe (grounded for shielding).
- The AOA IM must be mounted within six feet of the AOA indicator.
- The AOA IM must be mounted within six feet of the power source, fused and connected with an on/off switch.

Note: *If a longer cable is required it may be possible to have a longer custom cable assembly fabricated. Contact Alpha Systems for more information (763) 506-9990.*
Use the following formula when calculating the additional load:

\[(\text{Module Weight}) \times (\text{Aircraft “G” Limit}) \times 1.5 (\text{Safety Margin}) = \text{Additional Load}\]

Example:

\[.8 \text{ lbs.} \times 6.6 \times 1.5 = 7.92 \text{ lbs.}\]

If the AOA IM can be installed without additional support structure, then it would normally be a minor alteration. Please refer to AC43.13-2B Chapter 1 and Chapter 2 paragraphs 201, 202, 204-206 for guidance.

2.4 Establish the Location for the AOA Probe:

The AOA probe is mounted on the wing with the following limitations:

- The AOA probe is mounted a minimum of 24 in. outboard of the propeller arc.
- The AOA probe is mounted a minimum of 9 in. inboard of the wing tip.
- The AOA probe is mounted, with clearance, inboard or outboard of any struts or landing gear.
- As a recommendation, the AOA probe should be mounted between 10% to 90% of the Mean Aerodynamic Chord (MAC), or 6 inches from the leading edge and 10 inches from the trailing edge (in front of the center span is optimal).
- If the heated probe is to be installed, the AOA probe must first be checked to verify that there is NO effect when turned on to any equipment such as a remote compass system.

For twin-engine aircraft, the AOA probe can be mounted on the nose on a non-structural area if approved by your A&P mechanic.

Due to the vast number of aircraft, wing designs, inspection locations, braces, struts and so on, the object of the “best location” is the probe to be mounted in “clean air flow / undisturbed air.” At this location of the probe, all AOA angles, slips or attitudes would not affect the measurement of air present at the tip of the AOA probe. With this in mind, the AOA probe can be mounted on the nose area for twin engine or pusher type aircraft.

Remove the inspection cover and use it as a template to cut out a standard 9" x 9" AOA probe mounting plate to the same shape and drill the same holes. If required, install a “doubler” plate for strength.

Note: For fabric wing aircraft, composite wing aircraft or dual prop aircraft, please contact Alpha Systems AOA for guidance with installation of the AOA Probe at (763) 506-9990.

Listed below are three different scenarios. Find and complete the one that pertains to your installation, and use the following formulas when calculating the additional load and drag.

\[(\text{Probe + Hardware Weight}) \times (\text{Aircraft “G” Limit}) \times 1.5 (\text{Safety Margin}) = \text{Additional Load}\]

Examples:

\[.6 \text{ lbs.} \times 6.6 \times 1.5 = 5.94 \text{ lbs.}\]

\[(\text{Drag Coefficient}) \times (\text{Frontal Area of the Probe}) \times V_{NE}^2 = \text{Drag in lbs. at V}_{NE}\]

\[.000327 \times .064 \times 200^2 = .83712\]
• **If a non-structural inspection panel** is available, determine if the existing structure will support the additional load and drag of the probe and mounting hardware. Please refer to the airframe manufactures maintenance manual, AC43.13-2B Chapter 1 & Chapter 3 for guidance. This is the preferred method of installing the probe and in most cases will require no additional support structure; hence a minor alteration. However, if you have a very fast and/or a thin skinned aircraft the addition of supporting structure may be required. If so, this would be considered a major alteration.

• **If a structural panel is available** and used to support the probe, this would be considered a major alteration. Engineering data may be required and should be obtained prior to any work being performed. Please refer to the airframe manufactures maintenance manual, AC43.13-1B Chapter 4, AC43.13-2B Chapter 1 & Chapter 3 for guidance.

• **If no inspection panel is available** to support the probe, an inspection hole along with a doubler and/or supporting structure may be installed in the wings skin. This would also be considered a major alteration and engineering data may be required and should be obtained prior to any work being performed. Please refer to the airframe manufactures maintenance manual, AC43.13-1B Chapter 4, AC43.13-2B Chapter 1 & Chapter 3 for guidance.

2.5 Establish a Plan to Route the Sense Lines Through the Aircraft Structure:

Observe the following limitations:

- **Do not remove hose end caps until final connector installation.** This keeps contamination from entering the sense lines during installation.
- Minimum bend radius of 4” for the lines must be observed.
- Attach lines at regular intervals by means of suitable clamps.
- Do not clamp lines at the end fittings.
- Use AN931 Grommets (preferred) or bulkhead fittings where they pass through bulkheads.
- To install our system in a pressurized aircraft, Alpha Systems has created a pressurized kit to utilize existing electrical connector pass-through.
- Keep the lines well clear of any moving controls or cables.

Refer to the airframe manufactures maintenance manual and AC43.13-1B chapter 12 section 4 for instructions on replacing/installing new pitot-static lines.

2.6 Establish a Plan for the Electrical Power:

The Alpha Systems AOA unit requires approx. ½ amp (500 mA) of electrical power within its acceptable voltage range of 12-32VDC. Our recommendation would be to have the Alpha Systems AOA draw power from the avionics bus, through an on/off switch and with a 1 Amp fuse or breaker in-series with the positive lead for the IM (this would offer some protection from surges during startup and the on/off switch enhances operational flexibility).

For additional information, please refer to AC43.13-1B Chapter 11 which has a wealth of information on wire, switches, loads, etc. AC43.13-2B Chapter 2 paragraph 207 is useful as well.
2.7 Optional AOA Probe Heat Installation:

The optional probe heat requires 8 Amps of electrical power at 12 or 28VDC. We recommend a separate 10 Amp dedicated breaker for the heated option.

Note: Alpha Systems provides an optional Heated Probe Relay Kit that includes MIL-spec cable, a relay, in-line fuse, and a diode for installing a heated probe system.

Determine the size of wire required from AC43.13-1B Chapter 11 Section 5, (12VDC in free air, #14 wires will be adequate for runs up to 20' & for 24VDC in free air, #16 wires will be adequate for runs up to 25'). As an added precaution, to prevent interference with other aircraft systems, use MIL Spec. shielded wire. Electrical cable/wire must be installed such that the risk of mechanical damage and/or damage caused by fluids, vapors, or sources of heat, is minimized. Route as far away as possible from any instrument system or wiring that may be affected. AC43.13-1B Chapter 11 has a wealth of information on wire, switches, loads, etc., AC43.13-2B Chapter 2 paragraph 207 is useful, as well.

2.8 Review Your Plans:

Make sure that your plans meet the requirements of the following regulations:

§23.1301:

(a) Is it of a kind and design appropriate to its intended function? **If you intend to add an Alpha Systems AOA and can do it as described above then the answer is “YES”**.

(b) Can it be labeled as to its identification, function? **The Alpha Systems AOA meets this identification requirement for the indicator. However, if you install the optional on/off switch or heated probe, then you are required to label the switch and circuit breaker(s) as to their function.**

(c) Can it be installed according to limitations specified? **You must meet all specified requirements to answer this “YES”.**

If you answered any of the above questions with a “NO,” revise your plan until you can answer all the questions with a “YES”.

§23.1309:

(a) When performing its intended function, will it adversely affect the response, operation or accuracy of any:

- Equipment essential to safe operations? **If the Alpha Systems AOA is installed correctly it should not affect any other equipment as it is a standalone system which does not interface with any other equipment. One exception is the optional heated probe which must be looked at very closely.**

- Other equipment unless there is a means to inform the pilot of the effect? **Same as above; additionally, do not utilize a circuit breaker shared with any other piece of equipment for the Alpha Systems AOA or the heated probe in an effort to avoid this situation.**

Refer to AC23.1309-1D section 9. It will help you answer the previous questions and the flow chart helps to determine if the installation will meet the requirements of §23.1309(a).
If you answered either of these two questions with a “YES,” revise your plan until you can answer them both with a “NO.”

If you made it through this section successfully, you are now ready to install the Alpha Systems AOA in your aircraft.

(End of chapter)
3. INSTALLATION

3.1 Installation Overview:

The following images show the typical connections for a properly functioning AOA system:

The standard AOA system consists of and IM that includes the pressure sensing system for use with non-pressurized aircraft as well as a single display, mounted in the cockpit and connected via the AOA-4029EXT Display Extension Cable. The sensing hoses from the probe, mounted on the wing, are connected directly to the IM. Note the electrical wiring pinouts that connect to existing aircraft systems when planning the installation.

-See appendix: 5.5 for full page view-
The pressurized AOA system consists of both an IM and a Sensor Interface Module. The Sensor Interface Module now holds the pressure sensing system which isolates the IM from outside of the pressurized cabin of the aircraft. Note the wiring pinouts on the image below to properly connect the power, audio, and sensor via existing aircraft systems when planning the installation.

-See appendix: 5.6 for full page view-
Alpha Systems’ dual kits are designed to be installed in situations when more than one pilot would like to observe the AOA indications. This is done by installing a Dual Display Interface that splits the display signal from one IM to two displays. A dual display extension cable is used to connect the IM to the Dual Display Interface, which connects via display extension cables to each display. Note that one display will be labeled as SECONDARY, and must be installed with the primary display in order to function properly. The displays are calibrated simultaneously, using the same OAA & Cruise set-point calibration routine as a Non-Pressurized Standard Version. The main difference in a dual system is the Brightness Calibration routine can be completed individually for each display to each pilot’s preference.

-See appendix: 5.7 for full page view-
Alpha Systems’ dual pressurized kits are designed to be installed in situations when more than one pilot would like to observe the AOA indications in a pressurized aircraft. A dual pressurized system utilized the components of both a dual and pressurized system, including the **Dual Display Interface** and **Sensor Interface Module**. The calibration routine, AOA observations, and overall functionality remain the same as a Non-Pressurized Standard Version. However, remember that the Brightness Calibration routine is individual to each display in any dual system.

-See appendix: 5.8 for full page view-
Pressurized Version w/ IO Module

Alpha System’s IO Module (DSTR-AA971) (1) can provide a combination of different inputs to supplement the feedback that the pilot receives from the system. The inputs can include gear warning, flap switch response, as well as an analog flap signal for aircraft that use a variable flap signal.

The above image shows all possible IO inputs (2) to the system, however, refer to the list below for the specific wiring diagrams associated with your aircraft’s systems:

- Analog Flap Input – Appendix (pg. 5.20)
- Discrete/Low Voltage Flap Input – Appendix (pg. 5.21)
- Reverse Analog Flap Input – Appendix (pg. 5.22)

The Flap IO Extension can be incorporated into any existing or new Alpha Systems AOA Eagle kit - whether it is a standard/pressurized or single/dual display system with the addition of a software / hardware update, and associated cabling.
3.2 Preparing to Install the Probe:

In chapter two, the location for the probe was established. If it was determined that additional structure or modification to the wing will be required, perform that work now in accordance with the established plan and/or any required engineering data.

If not already done, remove the inspection panel at the location where the probe will be mounted.

Cut plate shape and drill holes in the AOA probe mounting plate to fit the wing inspection hole (the panel removed may be used as a template, or, if desired, the brackets from the AOA plate may be removed and the AOA plate be used as a template to install the brackets to the existing plate).

Ensure that the slot in the mounting plate is aligned so that the rounded end faces forward (direction of flight).

The design of the system requires the probes angle to be referenced to the chord of the wing, typically, starting at 50 degrees. If the curvature of the mounting surface tips one direction or the other, compensate or tip the probe to change the angle to the mounting plate to correct. Find the hole in the bracket that allows it to be locked for this new angle.

NOTES:
1.) Probe and 2 fittings = .23 lbs.
2.) 9” x 9” plate + hardware = .40 lbs. (Less when cut to fit existing opening)
3.) Add .25 lbs. with optional probe heat
4.) Weight of sense line is .02 lbs. / ft.
5.) Material: .040” 6061-T6 Aluminum
On a non-structural panel, the screw spacing should be no less than one screw every two to three inches along the circumference of the mounting plate. If the existing layout is greater, add nut plates as required to accomplish the proper screw spacing (on a structural panel the screw spacing would be much closer).

Drill holes in the probe mounting plate to match the layout in the wing. (Use the inspection panel as a template).

Install the mounting plate on the wing and check for a proper fit. When satisfied, remove the panel and prepare the panel for paint.

Finish panel as desired and set aside to cure.

3.3 Installation of the AOA Sense Lines:

Gain access to the aircraft so that the AOA sense lines can be installed and routed through the aircraft from the probe location to the AOA Interface Module location in accordance with the plan established in chapter two.

Route the sense lines and observe the following requirements:
- The sense lines have a minimum bend radius of 4”.
- Attach sense lines at regular intervals by means of suitable clamps.
- Do not clamp sense lines at the end fittings.
- Use AN931 grommets (preferred) or bulkhead fittings where the sense lines pass through bulkheads.
- To install our system in a pressurized aircraft, Alpha Systems has created a pressurized kit to utilize existing electrical connector pass-through.
- Do not remove the caps installed on either ends of the sense lines, and leave sufficient length so they may be cut to length later in the installation process.

Note: Keep the lines well clear of any moving controls or cables.

The following section will show how to properly install the electrical connections for various parts of the AOA system.
3.4 Install the Wiring, Switch & Circuit Breaker for the AOA System:

- Ensure that the aircraft electrical system is **NOT** powered and the aircraft battery is disconnected.
- Install the circuit breaker *(1 Amp)*. Mount in a manner accessible to a crewmember during flight for circuit breaker resetting.
- Identify and label the circuit breaker.
- *(Optional)* Install the on/off switch so it is accessible to appropriate crewmembers. If installed, label the switch as to its operation.
- Route the AOA-4028 cable from the circuit breaker to the on/off switch (if installed), then to the control module location. Observe the following:
 - Keep wires clear of any moving controls or cables.

WARNING: *In no case may a wire be clamped to a line containing flammable fluids.*

- Connect the WHITE WIRE (NO Stripe) to power (+) from the avionics buss.
- Connect the WHITE WIRE WITH BLUE STRIPE to an adequate ground (-).

Note: If additional wire was used, ensure the wire is identified / labeled, tested for proper connection and insulated properly.

- Attach the shielding together at a break in the wire (i.e. at the switch) and ensure it is insulated so as to prevent contact with any other conductor. Do not connect the shield to ground as it is grounded at the connector; doing so would cause a ground loop.
- **Recheck for proper polarity.**
3.5 Typical Pitot Heat / AOA Heat Electrical Connection:

In chapter two, a plan was established so that the requirements for installing the probe heat were satisfied. In accordance with that plan:

- If not already done so, ensure that the aircraft electrical system is **NOT** powered and the aircraft battery is disconnected.
- Install the circuit breaker (10 Amp). Mount in a manner accessible to a crewmember during flight for circuit breaker resetting.
- Identify and label the circuit breaker.
- Install the on/off switch so it is accessible to appropriate crewmembers.
- Label the switch as to its operation.
- Label the wire so it may be identified once installed.

Install the wire from the circuit breaker, through the switch, to the probe location and to a suitable ground. Observe the following:

- Physically separate electrical wire from any lines or equipment containing oil, fuel, hydraulic fluid, alcohol or oxygen.
- Route wires above any flammable fluid lines and securely clamp to structure.

WARNING: In no case may a wire be clamped to a line containing flammable fluids.
• Route as far away as possible from any instrument, system or wiring that may be affected (i.e. compass/flux gate, antenna or antenna coax).
• Leave sufficient wire at the probe location so it may be cut to length and connected to the probe later in the installation process.
• Attach the shielding to a suitable ground on one end of the wire only to prevent a ground loop.
• Attach the shielding together at a break in the main conductor (i.e. at the switch connections) and ensure it is insulated as to prevent contact with any other conductor.
3.6 Typical IO Electrical Connection:

Discrete/Low Voltage Discrete Flap Input

Alpha Systems’ Flap IO Extension kit is designed to be installed in situations where the pilot would like to observe the changes in AOA corresponding to different flap positions. Once calibrated, the system automatically changes scaling keeping set points accurate for any flap deployment.

It utilizes the aircraft’s existing flap sensing inputs to feed information through the additional **IO Module** and into the standard/pressurized **IM**, and finally to the display; providing supplemental AOA information to the pilot. The Flap IO Extension can be incorporated into **any** existing or new Alpha Systems AOA kit by doing the following:

- Ensure that the aircraft electrical system is **NOT** powered and the aircraft battery is disconnected.
- Install the .5 Amp fuse from the 12 – 28 VDC buss which is then connected to the common of one of the poles and one side of the coil of the relay.
- **NOTE:** Flap 0 is reserved for Flaps UP or clean. **Default with NO flap switches connected is clean**
- Connect the aircraft flap position switch or switches to Flaps 1, Flaps 2, Flaps 3 on the flap input module.
 - Keep wires clear of any moving controls or cables.
- Connect the normally open contact to the Flap 1 Input on the IO module via .5 Amp in-line fuse.
- Repeat these steps for other flap positions as needed.

NOTICE:
If using only one flap setting, it is required to connect the FLAP 1 SWITCH only. If using two flap settings, it is required to connect both FLAP 1 SWITCH & FLAP 2 SWITCH and so on. The number of flap inputs to connect is dependent on the amount of flap positions being monitored on the aircraft.
Analog Flap Input

Alpha System’s Flap IO kit is also capable of an analog flap input signal specific to certain types of aircraft. Reference the DSTR-AOA-1970 Connection Diagram when connecting the aircraft’s flap inputs. 0 volts = Flaps UP or Clean, 12 or 28 volts Flaps fully deployed. Follow the analog Flap adjustment procedure to adjust for specific aircraft Flap position.

- Connect the Flap Analog Input from the aircraft to pin 13 of the DB15 connector on the IO Module. Insert 0.5A Fuse AOA-1967 inline.
- Connect the Ground from the aircraft to pin 14 of the DB15 connector on the IO Module.
- Also connect Ground from the aircraft to pin 15 of the DB15 connector on the IO Module.
Note: Refer to the Analog Flap Input Calibration guide for instructions on running the Flap Diagnostics routine to verify correct installation. This guide is located on page 1.20 of the Operations Manual.

Reverse Analog Flap Input

Alpha System’s Flap IO kit is also capable of a reverse analog flap input signal specific to certain types of aircraft. Reference the DSTR-AOA-1970 Connection Diagram when connecting the aircraft’s flap inputs. 12 or 28 volts = Flaps UP or Clean, 0 volts Flaps fully deployed. Follow the analog Flap adjustment procedure to adjust for specific aircraft Flap position

- Connect the Flap Analog Input from the aircraft to pin 13 of the DB15 connector on the IO Module. Insert 0.5A Fuse AOA-1967 inline.
- Connect the Ground from the aircraft to pin 2 of the DB15 connector on the IO Module.
- Also connect Ground from the aircraft to pin 15 of the DB15 connector on the IO Module.
Note: Refer to the Analog Flap Input Calibration guide for instructions on running the Flap Diagnostics routine to verify correct installation. This guide is included in the AOA kit.
3.7 RS232 Communications:

The first configuration is the RS232 Display Adapter (DSTR-AOA-9300). This system allows the use of an aircraft's existing AOA system to interface with the Alpha Systems AOA Displays.

RS232 Display Adapter

The RS232/ARINC429 Display Adapter is a way for an existing flight system to communicate with Alpha Systems’ displays.

RS232 Display Adapter Connectors

Display Connector - The Display Connector is a Hirose 10 pin connector used to connect the Display to the RS232 Adapter.

Power and RS232 Host Interface DB15 Connector - The Power and RS232 Host Interface Connector is a 15 position DSUB connector used to connect the RS232 Adapter to the Host System and contains the following signals:

- Pin 11; Power: +12 to +28 VDC, 500 mA min.
- Pin 10; Power Ground
- Pin 5; Adapter RS232 TXD (True RS232 or TTL Level); Adapter to Host (Not Used)
- Pin 2; Adapter RS232 RXD (True RS232 or TTL Level); Host to Adapter
- Pin 6; RS232 Signal Ground
- Pin 1; Shield

RS232 Interface Protocol

- Serial Protocol based on RS232
- 9600 baud, 1 start bit, 8 data bits, no parity, 1 stop bit
- Factory default set to RS232 levels (+/- 5 VDC Levels)
- Can be strapped to TTL (0 to 5 VDC) levels
- Maximum distance to Host: TBD
Commands Strings from the Host Device

A Command String from the Host Device to illuminate a display segment(s) consists of a Display Segment Illumination Character followed by a Carriage Return Character as shown below:

\[\text{DCIDCR} \]
Where;
DC (30-39, 41-49) One Display Segment Illumination Character
DID (61, 62, or 63) Display ID; 61 = Primary, 62 = Secondary, 63 = both
CR (0D) Carriage Return Character to end the command string

A Command String from the Host Device to change the display brightness consists of an Adjust Brightness Command Identifier, a Brightness Level Character, and a Carriage Return Character as shown below:

\[\text{ADBLCR} \]
Where;
AD (53) Command Identifier always a 53 hex
BL (30-39, 41-46) 16 Brightness Levels from Dimmest to Brightest Level
CR (0D) Carriage Return Character to end the command string

RS232 Command Protocol
Display I/F Module RS232 Transmit

The second way to communicate via RS232 is by using the Alpha Systems I/F Module and Probe to calculate AOA and transmit the information to an existing Primary Flight Display (PFD).

The RS232 Interface is found on the 15 pin Dsub I/O Connector of the AOA I/F Module. It consists of the following signals:

- Pin 5; RS232 TXD
- Pin 6; RS232 Signal Ground
- Pin 4; Shield

RS232 Interface Protocol

- Serial Protocol based on RS232
- 9600 baud, 1 start bit, 8 data bits, no parity, 1 stop bit
- Factory default set to RS232 levels (+5VDC to -5VDC)
- Can be strapped to TTL levels
- Maximum distance to Host: TBD
Output Serial RS232 Data Stream at Interface

The Output Serial Data Stream is a continuous stream of data consisting of an STX (02 hex) character, 3 bytes of hex data that correspond to the display segments that are currently illuminated, and an EOT (04 hex) character.

RS232 Command Protocol:

<table>
<thead>
<tr>
<th>ILLUMINATED LEDS</th>
<th>DATA BYTES</th>
</tr>
</thead>
<tbody>
<tr>
<td>NONE</td>
<td>0x00 ; 0x00 ; 0x00</td>
</tr>
<tr>
<td>RED TRIANGLE</td>
<td>0x03 ; 0x00 ; 0x00</td>
</tr>
<tr>
<td>RED TRIANGLE & RED CHEVRON</td>
<td>0x3F ; 0x00 ; 0x00</td>
</tr>
<tr>
<td>RED CHEVRON</td>
<td>0x3C ; 0x00 ; 0x00</td>
</tr>
<tr>
<td>RED CHEVRON & UPPER DOUGHNUT</td>
<td>0xCF ; 0x00 ; 0x00</td>
</tr>
<tr>
<td>UPPER DOUGHNUT</td>
<td>0xC0 ; 0x00 ; 0x00</td>
</tr>
<tr>
<td>WHOLE DOUGHNUT</td>
<td>0x00 ; 0x03 ; 0x00</td>
</tr>
<tr>
<td>LOWER DOUGHNUT</td>
<td>0x00 ; 0x00 ; 0x00</td>
</tr>
<tr>
<td>LOWER DOUGHNUT & YELLOW CHEVRON</td>
<td>0x00 ; 0x3F ; 0x00</td>
</tr>
<tr>
<td>YELLOW CHEVRON</td>
<td>0x00 ; 0x3C ; 0x00</td>
</tr>
<tr>
<td>YELLOW CHEVRON & YELLOW TRIANGLE</td>
<td>0x00 ; 0x00 ; 0x00</td>
</tr>
<tr>
<td>YELLOW TRIANGLE</td>
<td>0x00 ; 0xCF ; 0x00</td>
</tr>
<tr>
<td>YELLOW TRIANGLE & GREEN BAR</td>
<td>0x00 ; 0xC0 ; 0x03</td>
</tr>
<tr>
<td>GREEN BAR</td>
<td>0x00 ; 0x00 ; 0x03</td>
</tr>
<tr>
<td>ALL SEGMENTS</td>
<td>0xFF ; 0xFF ; 0x03</td>
</tr>
<tr>
<td>RED TRIANGLE, RED CHEVRON & UPPER DOUGHNUT</td>
<td>0xFF ; 0x00 ; 0x00</td>
</tr>
<tr>
<td>RED TRIANGLE, RED CHEVRON & WHOLE DOUGHNUT</td>
<td>0xFF ; 0x03 ; 0x00</td>
</tr>
<tr>
<td>RED TRIANGLE, RED CHEVRON, BLUE DOUGHNUT & YELLOW CHEVRON</td>
<td>0xFF ; 0x3F ; 0x00</td>
</tr>
<tr>
<td>RED TRIANGLE, RED CHEVRON, BLUE DOUGHNUT, YELLOW CHEVRON & YELLOW TRIANGLE</td>
<td>0xFF ; 0xFF ; 0x00</td>
</tr>
</tbody>
</table>
3.8 Install the AOA Indicator:

In chapter two, the location for the AOA indicator was established. If it was determined that additional structure or modification to the instrument panel will be required, perform that work now in accordance with the established plan and/or any required engineering data.

The Alpha Systems AOA cannot be placed in the cockpit in such a manner as to obstruct the pilot’s view or cause distraction.

The Alpha Systems AOA cannot be placed in the cockpit in such a manner as to interfere with the pilot’s view of primary flight instruments.

Install the AOA indicator and check for fit and clearances. The AOA display may be mounted using the four (6x32) threaded mounting holes. This allows the Eagle display to be mounted and positioned so that the display is up as high in the cockpit as possible, preferably on top of the glare shield, allowing a view of the aircraft’s AOA without looking down to see the display.

Route the cable from the AOA indicator to the AOA IM location. Observe the following:

- Keep wires well clear of any moving controls or cables.
- Physically separate electrical wire from lines or equipment containing oil, fuel, hydraulic fluid, alcohol or oxygen.
- Mount electrical wire bundles above flammable fluid lines and securely clamp to structure.

In a dual system, route the cables from both AOA indicators to the Dual Display Interface using the provided display extension cables.

WARNING: *In no case may a wire be clamped to a line containing flammable fluids.*

3.9 Install the AOA Interface Module (IM):

In chapter two, the location for the AOA Interface Module (IM) was established. If it was determined that additional structure or modification will be required, perform that work now in accordance with the established plan and or any required engineering data.

Attach the AOA IM to the airframe utilizing the attached mounting base plate. The AOA IM must be grounded for shielding. If the module is not grounded by the mounting hardware, install a grounding strap from one of the mounting screws to a suitable ground.

Cut the AOA sense lines (at a 90° angle, NO burs) to length with a razor blade and insert the lines firmly in the connectors. Observe the color coding: BLUE / FRONT connector → blue sense line AND WHITE / BOTTOM connector → white sense line. When correctly installed, the line will be inserted approximately 3/8” into the connector.

Note: *Push hose into connector until it stops.*

Ensure the line is installed correctly by giving the tubing a light pull. If the tubing does not back out, it is a good connection.
How to remove the tubing from Quick-Release fittings:

- Using a ¼” box end wrench, or your fingers. Push down the release ring on the fitting and then pull air tube to remove.

Quick installation hint!

The Alpha Systems AOA utilizes push-in fittings. Once the hoses are installed, draw a line on the hose at the junction of the fitting. Remove hose and reinsert, verifying the hose is inserted completely to the line. If the reinsertion of the hose covers the line, the hose was not inserted fully the first time! Cut OFF hose at line and REPEAT ABOVE PROCESS!

(Continued on next page)
Note: The blue and white hose connects to the Sensor Interface Module in a pressurized system.

Connect the display cable connector (10 pin) to the AOA Interface Module (IM) connector - they are both color coded BLUE. This may be accomplished by holding the cable connector by its black strain relief and rotating it on the IM display connector until the alignment keyways mate up. Then, push towards the control module and the retaining collar will snap into place tightly against the AOA IM.

Connect the switch panel cable connector (6 pin) to the AOA IM connector – they are both color coded GREEN. This may be accomplished by holding the cable connector by its black strain relief and rotating it on the IM power connector until the alignment keyways mate up. Then, push towards the AOA IM and the retaining collar will snap into place tightly against the AOA IM.

Connect the power cable connector (4 pin) to the AOA IM connector - they are both color coded RED. This may be accomplished by holding the cable connector by its black strain relief and rotating it on the IM power connector until the alignment keyways mate up. Then, push towards the AOA IM and the retaining collar will snap into place tightly against the AOA IM.

Note: Pull lightly on the wire. If the connector stays on the IM, the connector is seated completely.

To remove either of the electrical connectors, grip the collar and pull away from the AOA IM. The connector will slide off.

The DB 15 pin connector on the IM marked with YELLOW is for the audio interface and future I/O connections.

In a pressurized system, the YELLOW connector connects to the audio. However, it also connects to the power, ground, and sensor output wires of the Sensor Interface Module.
3.10 Install the AOA Probe and Mounting Plate:

Due to the vast number of aircraft and the wide variety of possible inspection cover locations, Alpha Systems AOA has designed an AOA sense probe that can be tilted and locked at different angles, ranging from 35 degrees to 90 degrees. This design allows for the deviation or tilt of the skin surface difference from the chord of the wing while allowing for the AOA probe to be “pinned” in place to get an accurate full-scale range of AOA output.

Install the AOA probe in the mounting plate and secure it as follows:

- Locate the 50° index hole on the AOA probe using the following figure as a starting angle.
- Insert the AN ¼-28 bolt through the probe lock plate. Make sure that the pin on the probe lock plate faces the thread side of the bolt.
- Insert the AOA probe through the mounting bracket and line up the bolt hole in the AOA probe with the bolt hole in the mounting bracket.
- Insert the AN ¼-28 bolt and probe lock plate loosely through the AOA mounting bracket and AOA probe from the left side (looking at AOA probe from rear).
- Line up the 50° index hole on the AOA probe with the front hole in the mounting bracket. Insert the longer pin on the probe lock plate through the front hole on the mounting bracket and into the 50° hole on the AOA probe. The probe lock plate location should match the following figure.

Note: Refer to Appendix page 5.13 and 5.14 for more information on the probe lock plate.

AOA Probe Pin Positions – Right Side

AOA Probe Pin Positions – Left Side

Forward
3.11 Correct Position of Probe Lock Plate:

Note: The probe lock plate can face forwards or backwards and can be placed on either the left or right side of the AOA probe depending on which pin hole is selected on the AOA probe.

It may be necessary to remove material from the mounting plate that would prevent the AOA probe from being installed at the proper angle. If the 50° (or less) angle of the AOA probe interferes with the plate, or in the final calibration steps the AOA probe needs to be at a tighter angle, remove material from the mounting plate only as required to allow enough range of motion for accurate calibration. When in-flight calibration is complete, remove mounting plate from aircraft, use high-temp urethane/silicone and fill in gaps in front and behind the probe.

CAUTION: Drilling out the probe is not needed and will nullify the warranty.

To finish the AOA probe installation:

- Install the washer and nut onto the AN4 bolt and tighten it so the AOA probe will not move in flight.
- Use the included protractor to confirm that the AOA probe is at an initial 50° angle. If not, loosen the nut enough that the probe lock plate can be backed out of the mounting bracket enough to rotate the AOA probe until the correct hole is lined up. Then, reinsert probe lock plate and retighten bolt and nut.
- Cut the sense lines (at a 90° angle, verify NO burrs) to length so they may be easily attached to the AOA probe but short enough so they will not kink when the mounting plate is secured to the wing. Allow enough hose to re-position the AOA probe angle for final adjustments.
- Insert the lines firmly in the connectors. Observe the two letters on the side of the AOA probe, “B” for blue (Front Hole) → **BLUE LINE** and “W” for White (Bottom Hole) → **WHITE LINE**. When correctly installed, the tube is inserted approximately 5/8 in. into the connector. Push hose in firmly until a positive stop is felt.

Note: Ensure the lines are installed correctly. The Alpha Systems AOA utilizes push-in fittings. Once the hoses are installed, draw a line on the hose at the junction of the fitting. Remove hose and reinsert, verifying the hose is inserted completely to the line. If the reinsertion of the hose covers the line, the hose was not inserted fully the first time! If you ever need to disconnect the lines depress the black collar (the furthest outboard portion of the connector) on the fitting and pull the line out.

- Slowly slide the AOA probe and mounting plate into position ensuring that everything will fit properly (no kinks or bends). When satisfied, secure the mounting plate to the wing and tighten all screws.

(Optional) If installing a heated probe, it will come from the factory installed with high temperature fittings and colored **(Blue / White)** high temperature hoses with the heater in the AOA probe.

(Optional) Cut the electrical wires for the AOA heated probe to length and connect them to the heater. Polarity is not an issue. Connect power to one lead and ground to the other. Attach the shielding to a suitable ground on one end of the wire only; this will prevent a ground loop.
3.12 Inspect the AOA Installation:

Follow these steps to inspect the AOA system installation:

- Inspect in the areas that were opened to install the AOA sufficiently so you can determine that the installation was done correctly and no discrepancies are left unresolved.

- Connect the aircraft battery and close any open circuit breakers for the AOA system and probe heat.

- Turn on the aircraft’s electrical system and the AOA unit, then the probe heat, if installed. Disregard any AOA indications at this time.

Note: The Alpha Systems AOA display could be flashing ALL AOA segments; this indicates ALL calibrations need to be made BEFORE it is functional.

- Power off the system.

- Re-inspect the areas that were opened to install the AOA system, paying particular attention to the electrical part of the installation. Determine that there are no unresolved issues with the electrical part of the installation.

- If probe heat was installed, check the operation of the probe heat with the switch in the “on” and “off” position. Ensure the compass or other systems are NOT affected by the probe heat.

WARNING: When finished, turn the probe heat off. When you check the AOA probe heater, DO NOT TOUCH THE AOA PROBE! Use a thermometer or place your hand above the probe to feel the radiated heat. Leaving the probe heat on for extended periods while on the ground will shorten its service life.

- Close the aircraft up by installing any access panels or equipment removed to install the AOA.

(End of chapter)
4. DOCUMENTATION

4.1 Background Information:

The Alpha Systems Angle of Attack System (AOA) may be installed on many aircraft models numerous ways. For this reason we cannot point you to a boiler plate logbook entry or sign off that will be good for all aircraft. We will help you through the documentation process by explaining pertinent topics and direct you in the proper direction by employing those topics in sample logbook entries.

4.2 Major vs. Minor Alteration:

In subject 1.3 we discussed the difference between a major and minor alteration, again “a minor change is one that has no appreciable effect on the weight, balance, structural strength, reliability, operational characteristics or other characteristics affecting the airworthiness of the product.” In Chapter 2, some scenarios were listed that may, in our judgment, make the installation a major alteration; however, this determination is the responsibility of the person performing the installation. If a determination was made that:

- The alteration was a minor alteration, the aircraft can be returned to service by an appropriately rated mechanic or by an individual that holds a repairman’s certificate for that specific aircraft by documenting the alteration in the aircraft records.

- The alteration was a major alteration, the FAA must be informed. The form used to report the alteration and the FAA’s response shall be determined by what part of the FAR’s the aircraft was certified under. For example:

 o If a certified mechanic with “Inspection Authorization” (IA) performs a major alteration to a type certificated aircraft using approved data (STC’s, AD’s, etc.), he/she must report that alteration to the FAA on a form 337 by mailing it to them at Oklahoma City within 48 hours of returning the aircraft to service, no response is required by the FAA.

 o If a certified mechanic with “Inspection Authorization” (IA) intends to make a major alteration to a type certificated aircraft using acceptable data (i.e. AC43.13-1B, AC43.13-2B, etc.), he/she must submit a FAA form 337 to the local FSDO describing the work to be completed and reference the acceptable data prior to commencing the work. The FAA’s response will normally be to approve the acceptable data by signing block 3 on the 337 form and return it to the mechanic. This is referred to as a “Field Approval.” Once the alteration is completed and the aircraft is returned to service the mechanic must mail the completed 337 form to the FAA at Oklahoma City within 48 hours of returning the aircraft to service.

 o If a certified mechanic or a person holding a repairman’s certificate for a specific experimental aircraft make or intend to make a major alteration to that aircraft they must report that alteration to the appropriate FSDO and receive a written response prior to further flight. There is no specific form that must be used to report the alteration; however the FAA will use the data you submit to determine if your alteration would require your aircraft to be returned to Phase 1 for further flight testing. It would be to your benefit to report the alteration using references of acceptable data so your aircraft will not be returned to Phase 1 unnecessarily.
4.3 Logbook Entries:

The pertinent parts of FAR § 43.9 (in italics) that describe the requirements for content, form, and disposition of alteration records that pertain to the AOA installation are listed below. I will explain the intent of the FAR as it applies to this installation.

FAR 43.9 – Content, Form, and Disposition of Maintenance Records:

(a) Each person who maintains, performs preventive maintenance or alters an aircraft shall make an entry in the maintenance record of that equipment containing the following information:

(1) A description (or reference to data acceptable to the Administrator) of work performed. The FAA would like a description of the work completed and under what authority was this alteration done. Your description of the work along with references to acceptable data satisfies this requirement. Acceptable data, listed in chapter two of this manual, may be used to support the description of the alteration.

(2) The date of completion of the work performed. Self-explanatory.

(3) The name of the person performing the work if other than the person specified in paragraph (a)(4) of this section. If work was performed on an airframe by anyone who does not hold an airframe mechanic/repairmen certificate, which is allowed under the authority of FAR § 43.3(d), their name should be included in the logbook entry.

(4) If the work performed on the aircraft has been performed satisfactorily, the signature, certificate number, and kind of certificate held by the person approving the work. The signature constitutes the approval for return to service only for the work performed. The FAA wants to know who is responsible for returning the aircraft to service. This could vary from a private pilot performing preventive maintenance in accordance with § 43.3(g) to an A&P mechanic with IA returning a certified aircraft to service after a major alteration. Please refer to subject 4.2 for a more in depth explanation of who can return your aircraft to service after the installation of the AOA system.

(d) In addition to this entry, major alterations shall be entered on a form, and the form disposed of, in the manner prescribed in appendix B, by the person performing the work. This is the requirement to notify the FAA described in the 4.2 section of this manual.

Following this criteria, here is a list of examples of different situations pertaining to logbook entries:

For the first example, an A&P mechanic, Stacy, installs the angle of attack system in a customer’s Flight Master 128 - a certified aircraft. She has made a determination that the installation is a minor alteration. In this case, only a logbook entry is required to return the aircraft to service. She could make the following basic entry fulfilling the requirements of § 43.9:

Stacy R. Aviator
A&P 546324567
However, Stacy is a very conscientious mechanic and wants to make an entry that not only meets the FAR requirements but also documents the alteration in enough detail so that if a question arises in the future, it can be remedied by simply reading the entry. She decides to make the following entry:

March 22, 2015

Aircraft Total Time: 358.2

To facilitate installing an Alpha Systems Angle of Attack System, part number DSTR-AOA-XXXXK, the following work was performed:

- *Removed an existing inspection panel on the left wing 24” inboard of the wing tip at station 121.* The probe mounting plate was trimmed to fit the opening and attached with a quantity of 8 AN526C832R8 screws. Successfully performed a structural analysis and static test in accordance with AC43.13-2B Chapter 1. Removed the mounting plate, prepped, primed and painted the mounting plate.

- *Routed two sense lines from the left glare shield to the location of the probe in the left wing in accordance with AC43.13-1B Chapter 12 Section 4 Paragraph 61(a & b).*

- *Installed the probe, part number AOA-4027, to the probe mounting plate and connected the sense lines. Installed the probe assembly to the opening on the left wing at station 121 and attached with a quantity of 8 AN526C832R8 screws.*

- *Installed an Alpha Systems Angle of Attack Indicator, part number DSTR-AOA-XXXX, serial number AOAIXXXX-XX, above the airspeed indicator on top of the glare shield in accordance with AC43.13-2B Chapter 1 and Chapter 2 paragraph 205(a-c).*

- *Installed an Alpha Systems Angle of Attack, AOA Interface Module, part number DSTR-AOA-XXXXE, serial number DSIXXXX-XX, behind the instrument panel on the avionics shelf at station 119, in accordance with AC43.13-1B Chapter 11, AC43.13-2B Chapter 1 and Chapter 2 paragraphs 201, 202, 204 & 207.*

- *Inspected the Alpha Systems AOA installation and performed the initial system power up, the zero pressure (on the ground) set-point calibration and (on the ground) brightness calibration procedures.*

Additionally, all work described above was done in accordance with the Alpha Systems Installation Manual, IOM-Eagle, Rev XX and in accordance with § 21.93(a) & 43.13(b). This airframe alteration is considered a minor alteration and is at least equal to its original condition.

The “In-Flight” calibration procedures need to be performed in accordance with the Alpha Systems Operations Manual and the satisfactory results recorded in the permanent aircraft records.

Stacy R. Aviator
A&P 546324567

Note: If this was an experimental aircraft and the owner held a repairman certificate for that specific aircraft, he/she could also return the aircraft to service.
After the “In-flight” calibration of the angle of attack (AOA) system, the aircraft owner made the following entry:

July 23, 2015 Aircraft Total Time: 359.3

A series of flights were made to successfully complete the in-flight calibration procedure. The probe angle after calibration is 50 degrees. The probe mounting bolt was tightened, the set screw was installed and the mounting plate was reinstalled. Actions performed in accordance with the Alpha Systems Operations Manual.

Joe B. Aviator
Commercial Pilot Certificate # 546324567

In this next example, an aircraft owner is very handy but does not hold a mechanic or repairmen’s certificate and would like to do the installation. Under FAR § 43.3(d) the installation may be performed under the supervision of a certificated mechanic. Stacy has developed a good reputation for doing a nice job on the installation of the AOA system and has agreed to supervise Paul. She adds Paul’s name as the person performing the work when she makes the logbook entry.

August 12, 2015 Aircraft Total Time: 1432.2

To facilitate installing an Alpha Systems Angle of Attack System, part number DSTR-AOA-XXXXK, the following work was performed:

• Removed an existing inspection panel on the left wing 32” inboard of the wing tip at station 136. The probe mounting plate was trimmed to fit the opening and attached with a quantity of 8 AN526C832R8 screws. Successfully performed a structural analysis and static test. Removed the mounting plate, prepped, primed and painted the mounting plate.

• Routed two AOA sense lines from the left instrument panel to the location of the probe in the left wing.

• Installed the AOA probe, part number AOA-4027, to the probe mounting plate and connected the AOA sense lines. Installed the probe assembly to the opening on the left wing at station 136 and attached with a quantity of 8 AN526C832R8 screws.

• Installed an Alpha Systems Angle of Attack Indicator, part number DSTR-AOA-XXXX, serial number AOAIXXXX-XX, left of the airspeed indicator in an existing hole.

• Installed an Alpha Systems Angle of Attack AOA Interface Module, part number DSTR-AOA-XXXXE, serial number DSIXXXX-XX, on the base of the glove box at station 124.

• Inspected the Alpha Systems AOA installation and performed the initial system power up, (on the ground) zero pressure set point calibration and (on the ground) brightness calibration procedures.

Additionally, all work described above was done in accordance with AC43.13-1B Chapter 11 & 12 section 4 Paragraph 61(a & b), AC43.13-2B Chapter 1 & 2 paragraphs 201, 202, 203(a-e) & 207 as well as in accordance with the Alpha Systems Installation Manual, IOM-Eagle, Rev XX by Paul R. Pilot under my supervision. In accordance with FAR § 21.93(a) & 43.13(b), this airframe alteration is considered a minor alteration and is at least equal to its original condition.
The in-flight calibration procedure needs to be performed in accordance with the Alpha Systems Operations Manual and the satisfactory results recorded in the permanent aircraft records.

Stacy R. Aviator
A&P 546324567

On the above entry, notice that the references to acceptable data were listed at the end of the entry, rather than with the individual steps. Either way is acceptable.

Paul is a student pilot, so he had his flight instructor make the calibration flight and the following logbook entry:

August 16, 2015 Aircraft Total Time: 1432.8

The AOA in-flight calibration procedures were successfully performed in accordance with the Alpha Systems Operations Manual.

Justin C. Lindberg
Commercial Pilot Certificate # 546324567

Justin is not a mechanic or the aircraft owner, so Stacy performed the work listed in her entry below:

August 16, 2015 Aircraft Total Time: 1432.8

The probe mounting bolt was tightened, the set screw was installed and the mounting plate was reinstalled. Actions performed in accordance with the Alpha Systems Installation Manual, IOM-Eagle, Rev XX.

Stacy R. Aviator
A&P 546324567

Stacy’s name is getting around and she is doing quite a few of the AOA installations. She is approached by a customer that has a Flight Master 240, a twin, and he would like the Alpha Systems AOA system with the probe heat option. After reviewing Chapter 2, she determines that the only thing that would qualify as a major alteration is the addition of the probe heat because of the electrical load. She explains this to the aircraft owner and offers two options: The first option is to fill out an FAA form 337 for the entire AOA installation and submit it to the FAA for a field approval. The second option is to do the installation now as a minor alteration, without the probe heat, and submit the paper work for the addition of the probe heat and install it at a later date. The owner decides to have the AOA system installed now since he will be back later this fall for the annual anyway. Stacy did the installation and made a similar logbook entry as before, and she followed AC43-210 and submitted a 337 form along with Instructions for Continued Airworthiness (ICA) to the FAA for a field approval of the probe heat. Below is the narrative from box 8 of the 337 form:

Flight Master 240 Serial number: 123, Registration: N14U, August 18, 2015
Paragraph 1.) The objective of this alteration is to install the probe heat option to a previously installed Alpha Systems angle of attack system.

Paragraph 2.) Install heated probe in accordance with the Alpha Systems Installation and Operations Manual, IOM-Eagle, REV XX and AC43.13-1B Chapter 11 and AC43.13-2B Chapter 2 paragraph 207.
--- END ---

Before requesting a field approval, ensure your request meets the criteria for a major alteration, fill out the paper work completely, and use appropriate acceptable data and keep it simple. The FAA does not want to spend time reviewing requests for field approvals when the alteration can be done as a minor alteration.
Below is another example from box 8 of FAA 337 form. Stacy submitted this prior to doing the work on Joe’s AOA installation. The work was done the morning of July 22, and she made an appropriate logbook entry prior to beginning the work on the AOA installation.

Flight Master 128 Serial number: 321, Registration: N4JA, July 12, 2015

Paragraph 1.) The objective of this alteration is to install an inspection panel, identical to other inspection panels found along station 121. The inspection panel will be located in the lower skin of the left wing, 24” inboard of the wing tip equally distant between two ribs at station 121.

Paragraph 2.) Cut a 4” x 6” oval hole in the area described in paragraph 1. Install a doubler assembly, Flight Master part number DBLR-240LW. Fabricate an inspection cover from .032” 2024-T3 aluminum prep and paint. Secure the inspection cover with Qty. 8 AN526C832R8 screws. Work was performed in accordance with the AC43.13-1B Chapter 4 Section 4.

For more information please refer to AC43-210 which describes the field approval process and AC43.9-1F, instructions for completing the 337 form.

4.4 Documentation Review:

If the installation is determined to be a **minor** alteration, the aircraft can be returned to service with a logbook entry made by a certificated mechanic or a person that holds a repairman’s certificate for that specific aircraft.

If the installation is determined to be a **major** alteration, the aircraft can be returned to service with a logbook entry made by a person that holds a repairman’s certificate for that specific aircraft, certificated mechanic or a certificated mechanic with inspectors authorization (depending on the aircraft) AND the FAA has been informed of the major alteration and a written response is received authorizing flight after the alteration or a Field Approval is granted.

The calibration flight(s) may be conducted under §91.407 by at least a private pilot that is rated to fly the aircraft. §91.407(b) regarding carrying persons other than crew members. This only applies if the alteration has appreciably changed its flight characteristics or substantially affected its operation in flight; which is not the case with this alteration. The adjustment and tightening of the probe may be accomplished by a mechanic, a person that holds a repairman’s certificate for that specific aircraft or the aircraft owner if they hold at least a private a private pilot certificate under part §43.3(g) and Appendix “A” to Part §43 item (c)(26). These events need to be documented by the person performing the procedure(s); it can be done in one entry if performed by the same person.

The logbook examples demonstrate various ways to document work. Detailed entries require additional time and effort, but may be invaluable down the road if questions arise. **In addition, many people judge the quality of the work performed by the logbook entry.** One word of caution is that when doing your installation and paper work include only references that were actually complied with. Including references that were not actually complied with, just to make the entry look better, could be considered fraud.

Note: In an effort to make the documentation process easier, the entry can be made on any computer and printed (do not use water based ink) on plain paper and attached to the log book using a glue stick.

(End of chapter)
5.1 Acronyms and Abbreviations:

Acronyms and abbreviations used in this manual are defined as follows:

<table>
<thead>
<tr>
<th>TERMS</th>
<th>DEFINITION</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC</td>
<td>Advisory Circular</td>
</tr>
<tr>
<td>AMP</td>
<td>Ampere</td>
</tr>
<tr>
<td>AOA</td>
<td>Angle of Attack</td>
</tr>
<tr>
<td>AP</td>
<td>Audio Panel</td>
</tr>
<tr>
<td>CL</td>
<td>Coefficient of Lift</td>
</tr>
<tr>
<td>CFR</td>
<td>Code of Federal Regulations</td>
</tr>
<tr>
<td>CLmax</td>
<td>Coefficient of Lift Maximum</td>
</tr>
<tr>
<td>Cd</td>
<td>Coefficient of Drag</td>
</tr>
<tr>
<td>CL/Cd</td>
<td>Coefficient of Lift over Coefficient of Drag</td>
</tr>
<tr>
<td>FAA</td>
<td>Federal Aviation Administration</td>
</tr>
<tr>
<td>FAR</td>
<td>Federal Air Regulations</td>
</tr>
<tr>
<td>FSDO</td>
<td>Flight Standards District Offices</td>
</tr>
<tr>
<td>IM</td>
<td>Interface Module</td>
</tr>
<tr>
<td>IA</td>
<td>Inspection Authorization</td>
</tr>
<tr>
<td>MAC</td>
<td>Mean Aerodynamic Cord</td>
</tr>
<tr>
<td>MIL</td>
<td>Military</td>
</tr>
<tr>
<td>OAA</td>
<td>Optimum Alpha Angle</td>
</tr>
<tr>
<td>Vx</td>
<td>Speed that allows for best angle of climb</td>
</tr>
<tr>
<td>Vy</td>
<td>Speed that allows for the best rate of climb</td>
</tr>
<tr>
<td>STALL</td>
<td>Unable to maintain controlled flight</td>
</tr>
<tr>
<td>CAA</td>
<td>Critical Alpha Angle (STALL)</td>
</tr>
<tr>
<td>Va</td>
<td>Maneuvering speed</td>
</tr>
<tr>
<td>MAA</td>
<td>Maneuvering Alpha Angle</td>
</tr>
</tbody>
</table>
5.2 Operational and Environmental Limitations

| Operating Range: Airspeed | Minimum 25 knots TAS
Maximum 500 knots TAS |
|---------------------------|-----------------------|
| Operating Range: Altitude | Minimum 0 Ft MSL
Maximum 30,000 Ft MSL |
| Operating Humidity: | Maximum 96% Relative Humidity |
| Operating Temperature Range: | Minimum -20°C (-4°F)
Maximum 66°C (151°F) |
| Storage Temperature Range: | Minimum -30°C (-22°F)
Maximum 85°C (185°F) |
| Voltage operating range: | Minimum 12 Volts
Maximum 28 Volts |
| Electrical load: | IF Module:
<100 mA at 14 VDC typical
<50 mA at 28 VDC typical
Heated Probe
<8 AMP at both 12 VDC or 24 VDC |
Angular Operation:	-5 to +25 degrees angle of attack.
Precipitation:	The AOA probe functions properly when flown through non-icing precipitation.
De-icing Fluid:	No de-icing fluid restrictions on probe.
Sideslip Operation	+/- 15 deg
Note: At sideslip angles of greater than 15 degrees, the accuracy may be diminished. However, the error will cause the warning indications to provide a greater margin of safety prior to wing stall.	
Calibration Accuracy	A properly calibrated system will result in an accuracy of +/-3% over the full scale of the calibration.
5.3 Diagrams

Eagle Display

1 - Indication of Impending StALL (1.3 x V_s)
2 - Optimum Alpha Angle (OAA) (1.3 x V_s)
3 - Cruise Alpha (V_o or Maneuvering Speed)
4 - Calibration Set Points:
 (Zero Set Point)

www.alphasytemsaoa.com
Dual Pressure Diagram

For more information call

ALPHA SYSTEMS AOA

AOA SYSTEMS AOA at 763-506-9990

(not shown here)

Switch panel may be needed for specific models.

AOA SENSOR I/F MODULE P/N DSTR-4OA-1975

AIR HOSES

AOA PROBE

AOA SENSOR I/F MODULE EXTERROR CABLE P/N AOA-4065

AOA SENSOR + AUDIO INTERIOR CABLE P/N AOA-4056

POWER CABLE (+12-28VDC, GND) P/N AOA-4028

PRESSURIZED AOA I/F MODULE P/N DSTR-4OA-1960PX

DUAL DISPLAY I/F MODULE DUAL EXTERROR CABLE P/N AOA-4029EXT

Primary (Front) Display

Secondary (Rear) Display

Connection

Factory Bulkhead

Audio Panel

P/N DSTR-4OA-9525DUAL

Dual Display I/F Module

March 08, 2017
IOM-Eagle, Rev. BA

APPENDIX

5.10
Diagram: AOA System Diagram

Switch panel may be needed for specific models.
How to remove air tube from Quick-Release fittings:

Using a ¼" box end wrench, or your fingers, push down the release ring on the fitting and then pull air tube to remove.

<table>
<thead>
<tr>
<th>Push In</th>
<th>Pull Out</th>
<th>Push IN</th>
<th>Pull Out</th>
</tr>
</thead>
</table>

6180 140th Ave. N.W. Ramsey, MN 55303
www.alphasystemsaoa.com
Tech Support Call: (763) 506-9990
The design of the probe and probe placement on the probe locking plate is shown in detail. The probe is fixed in place, and the lock is tightened to 60 inch lbs. The probe is removed from the body, and the probe body and probe head are separated. The probe body and probe head are reassembled. The design of the probe and probe placement on the probe locking plate is shown in detail. The probe is fixed in place, and the lock is tightened to 60 inch lbs. The probe is removed from the body, and the probe body and probe head are separated. The probe body and probe head are reassembled.
PROBE MOUNTING EXAMPLE

NOT TO SCALE
<table>
<thead>
<tr>
<th>DISPLAY</th>
<th>RESPONSE</th>
<th>AUDIO RESPONSE</th>
<th>ACTION</th>
<th>STEP</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Ground, Zero Calibration - on ground, probe off, no airflow at AOA probe (clears all settings)</td>
<td>CAL button, press</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Brightness calibration</td>
<td>Blue donut + green flash 5x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>All LEDs flash</td>
<td>CAL button, press</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Select Audio Type</td>
<td>All LEDs ON</td>
<td>“Set brightness levels”</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Display cycles through 5 audio choices</td>
<td>CAL button, press</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>“Set Audio Choice”</td>
<td>SEL button, press & hold</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turn rotary switch to position 2</td>
<td>Turn rotary switch to position 3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turn system power OFF</td>
<td>Turn system power OFF</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Step 4 for Flaps 2 and 3 (as necessary)

<table>
<thead>
<tr>
<th>Display</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Turn system power OFF</td>
<td>Turn rotary switch to position 0</td>
</tr>
<tr>
<td>Blue donut LED ON</td>
<td>Complete</td>
</tr>
<tr>
<td>SEL button press (repeatedly for Flaps 2 & 3) (3)</td>
<td>Complete</td>
</tr>
<tr>
<td>SEL button press (repeatedly for Flaps 2 & 3) (3)</td>
<td>Complete</td>
</tr>
</tbody>
</table>

Step 4: Set Flap Setpoints

<table>
<thead>
<tr>
<th>Display</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Turn rotary switch to position 0</td>
<td></td>
</tr>
<tr>
<td>SEL button press</td>
<td>Calibration off</td>
</tr>
</tbody>
</table>

Step 3: Save Settings & Exit

<table>
<thead>
<tr>
<th>Display</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Turn rotary switch to position 0</td>
<td></td>
</tr>
<tr>
<td>SEL button press</td>
<td>Calibration off</td>
</tr>
</tbody>
</table>

Step 2: Cruise (weight adjusted Vm, maneuvers & speed)

<table>
<thead>
<tr>
<th>Display</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Green LED Flash 3X</td>
<td>Complete</td>
</tr>
<tr>
<td>Green LED Flash 3X</td>
<td>Complete</td>
</tr>
<tr>
<td>Cruise set-point complete</td>
<td>Complete</td>
</tr>
<tr>
<td>Cruise set-point complete</td>
<td>Complete</td>
</tr>
<tr>
<td>Green LED Flash 3X</td>
<td>Complete</td>
</tr>
<tr>
<td>Green LED Flash 3X</td>
<td>Complete</td>
</tr>
</tbody>
</table>

Step 1: Optimum Alpha Angle (OAA) Vx 1.3

- System power ON
- Fly at 1.3 X (hold altitude) (Vx 1.3)
- SYST donut LED Flash 3X
- SEL button press
- OAA set-point complete
- OAA set-point complete
- SEL button press
- Fly Flaps 2 & 3 (3) repeatedly
- Blue donut LED ON
- Display runs self-test
- Turn system power OFF

Action

- In-flight calibrations
- Alpha Systems Eagle AOA Calibration Flight Test Card

<table>
<thead>
<tr>
<th>Display Response</th>
<th>Audio Response</th>
<th>Action</th>
<th>Step</th>
</tr>
</thead>
</table>
1. Ground, Zero Calibration

<table>
<thead>
<tr>
<th>Failure</th>
<th>Audio Response</th>
<th>Display Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pressure - Too High</td>
<td>"Invalid set-point"</td>
<td>ALL LEDS FLASH CONTINUOUSLY</td>
</tr>
</tbody>
</table>

To isolate the failure between mechanical or electrical problems, the air hoses should be disconnected from the IF module (IM) and repeat steps 1-3 of section 1.5 in the operations manual.

If the condition persists, then the failure is electrical and the IM should be returned for an authorized repair.

If the setting is successful, the failure is mechanical, such as a blockage in the air hoses or AOA probe, etc. Identify the blockage and, once fixed, repeat steps 1-3 of section 1.5 in the operations manual.

2. In-Flight Calibrations

Optimum Alpha Angle (OAA) Vs x 1.3

<table>
<thead>
<tr>
<th>Failure</th>
<th>Audio Response</th>
<th>Display Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pressure - Too Low</td>
<td>"Invalid set-point"</td>
<td>ERROR: FLASHES 3X THEN GOES DARK AND CONTINUES TO FLASH BLUE DOUGHNUT EVERY 5 TO 6 SECONDS UNTIL ACCEPTABLE VALUE IS ENTERED.</td>
</tr>
</tbody>
</table>

If the pilot could not get a valid OAA value entered during the CAL button push and the display flashed BLUE and RED segments, the aircraft must be landed, and the AOA probe angle must be un-pinned, rotated away from the leading edge of the wing 5 degrees and re-pinned, allowing the new angle to be secured and tightened. The in-flight OAA calibration procedure must be repeated.

<table>
<thead>
<tr>
<th>Failure</th>
<th>Audio Response</th>
<th>Display Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pressure - Too High</td>
<td>"Invalid set-point"</td>
<td>ERROR: FLASHES 3X THEN GOES DARK AND CONTINUES TO FLASH BLUE DOUGHNUT EVERY 5 TO 6 SECONDS UNTIL ACCEPTABLE VALUE IS ENTERED.</td>
</tr>
</tbody>
</table>

If the pilot could not get a valid OAA value entered during the CAL button push and the display flashed a BLUE and YELLOW segments. The aircraft must be landed, and the AOA probe angle must be un-pinned, rotated toward the leading edge of the wing 5 degrees, re-pinned and tightened. The OAA in-flight calibration procedure must be repeated.

3. Cruise (Va)

<table>
<thead>
<tr>
<th>Failure</th>
<th>Audio Response</th>
<th>Display Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pressure - Too Low</td>
<td>"Invalid set-point"</td>
<td>ERROR: FLASHES 3X THEN GOES DARK AND CONTINUES TO FLASH GREEN BAR EVERY 5 TO 6 SECONDS UNTIL ACCEPTABLE VALUE IS ENTERED.</td>
</tr>
</tbody>
</table>

If the pilot could not get a valid Cruise value entered and the display flashed the GREEN segment, the angle of attack was too high. Fly at weight corrected, Va speed and try the calibration again.
AOA CAL: OPTIMUM ALPHA ANGLE (AIA)

1. Clean calibration 1G-STALL = ESTABLISH (determine)
2. AOA POWER = ON (Blue Doughnut + Green Bar Flash)
3. ROTARY SWITCH position = 2 (Triangle on Switch = Pointer) (Actual Air Speed)
4. Set point = Press (Listen for Calibration On)

BLUE DOUGHNUT & CRUISE POINT CALIBRATION

2. AOA DISPLAY = Blue Doughnut (Can) Speed = Calculate (Correct for IAS)
3. V. (Maneuvering Speed) = Calculate (Correct for IAS)
4. AOA DISPLAY = Blue Doughnut (Can) Speed = Calculate (Correct for IAS)
5. AOA DISPLAY = Blue Doughnut + Green Bar Flash (Fast)
6. AOA POWER = Off
7. AOA Probe is Ensuring Unobstructed & Ready for Flight

AOA Calibration Checklist

1. AOA DISPLAY = Blue Doughnut + Green Bar (Fast)
2. ROTARY SWITCH position = 1 (Triangle on Switch = Pointer)
3. AOA Probe is in Stable Air (Probed Probe from Wind)
4. AOA DISPLAY = All Segments Flashing
5. CAR button = Press (Listen for Zero Offset Complete)

Cruise Point Calibration

1. Set point reached = Contingent Triangular Point at 2
2. AOA DISPLAY = Green Bar (Steady)
3. Press button = Contingent Triangular Point at 2
4. SELECT button = Press (Listen for Calibration On)
5. NOTE: Flashing Blue Doughnut + Green Bar = AOA & Cruise

Procedure

Set point MUST be reset and saved. Re-complete Air CAL.

1. Press button = Sequential light test
2. AOA DISPLAY = Sequential light test
3. Press button = Press (Listen for Calibration On)
4. Set point = Press (Listen for Calibration On)

Save Calibration Values

- If you hear invalid value, repeat the following:
 - AOA DISPLAY = Green Bar (Steady)
 - Press button = Contingent Triangular Point at 2
 - AOA DISPLAY = Blue Doughnut (Can) Speed = Calculate (Correct for IAS)

CAUTION

- If you hear invalid value, return to Step 1 of AOA CAL: OPTIMUM ALPHA ANGLE (AIA)